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Abstract—Within a large group of decision makers, varying 

amounts of both conflicting and harmonious views will be 

prevalent within the group, but obscured due to group size. 

When the number of Decision Makers is large, utilizing 

clustering during the process of aggregation of their views 

should aid both knowledge discovery - about the group’s 

conflict and consensus - as well as helping to streamline the 

aggregation process to reach a group consensus. We conjecture 

that this can be realized by using the similarity of views of a 

large group of decision makers to define clusters of analogous 

opinions. From each cluster of decision makers, a 

representation of the views of its members can then be sought. 

This set of representations can then be utilized for aggregation 

to help reach a final whole group consensus.  

Keywords—Multi-criteria decision making, Pairwise 

comparison, Inconsistency, Multi-objective optimization, Genetic 

algorithms, Clustering. 

I. INTRODUCTION  

 Multi-Criteria Decision Making (MCDM) seeks to 
determine the suitability of alternative outcomes of a 
decision with respect to a number of criteria. The notion of 
Pairwise Comparison (PC) is employed extensively by 
MCDM methods such as AHP [1] as well as employable 
within methods such as TOPSIS [2] to aid the calculation of 
the weights of importance of the criteria. PCs help to 
facilitate a separation of concerns through allowing a 
Decision Maker (DM) to consider only a pair of decision 
elements and to determine their preference between the pair. 
From a set of PCs, one for each pairing of elements in a set 
of decision elements, a one-dimensional weights vector can 
be derived that represents a ranking of the set of elements 
under consideration by the DM. For many real world 
decisions the opinions of multiple DMs is utilized, to either 
benefit from their combined expertise or to incorporate 
conflicting views and experiences. When utilized within a 
group environment, the process of deriving a weights vector 
from multiple DMs opinions needs to incorporate the 
aggregation of the group of DMs’ PCs into the formulation 
of a single weights vector for the group. 

When the number of DMs is large, we propose utilising 

clustering during the aggregation process, to group together 

those DMs whose views are similar and then look to 

aggregate the views of these sub-groups. This should aid 

both knowledge discovery regarding the group’s conflict 

and consensus, as well as helping to streamline the 

aggregation process to reach a group consensus.  

Additionally DMs are subject to irrationalities such as 

inconsistencies which can adversely affect decision 

outcomes. Inconsistency within a set of PCs is the extent to 

which the set of judgments are coherent. When 

inconsistency is present it can have adverse effects upon the 

accuracy of any derived weights vector [3]. Therefore, 

seeking to reduce inconsistency during the aggregation 

process should help reduce its adverse effects. 

This paper presents an approach to the aggregation of PC 

judgments of a large group of DMs, whilst simultaneously 

seeking to reduce inconsistency. The approach first utilizes 

clustering - to group DMs with similar views into 

subgroups, then employs Multi-Objective Optimization 

(MOO) - to model compromise between each subgroup of 

DMs with respect to their views to find aggregated whole 

group solutions. From the clustering stage we can glean 

knowledge about the makeup of the group to help to 

determine for example, if the group is a homogeneous unit 

or a collection of defined subgroups, which can impact 

aggregation [4]. Measures of evaluation of the clustering 

have been defined to aid consideration of the number of 

clusters in which to group the DMs. The MOO stage then 

seeks to optimize multiple objectives simultaneously to find 

a set of trade-off solutions between the conflicting views of 

each subgroup of DMs. For these non-dominated solutions, 

improvement in any objective of the problem will result in a 

decrease within one or more of the other objectives. 

Together they map out the trade-off front of the problem. A 

range of measures have been defined that can be utilized as 

objectives to measure compromise between a set of 

judgments and an aggregated set of judgments. Constraints 

can also be utilized within the approach by each cluster of 

DMs, to represent the tolerance of compromise regarding 

the amount of concession they will tolerate in the pursuit of 

finding aggregated group solutions. From the trade-off front 

of solutions found during the MOO stage a single solution 

from the set of trade-off solutions can be selected, when 

required, based on utilizing knowledge of the total level of 

compromise of the group to reach consensus. 



 

 

The rest of the paper is structured as follows: Section II 

defines and discusses the problem of group aggregation of 

PCs, along with discussion of clustering and inconsistency 

reduction; our approach to the aggregation of a large group 

of DMs is then outlined and defined in Section III; Section 

IV discusses examples of our approach; conclusions are 

given in Section V. 

II. AGGREGATION OF JUDGMENTS OF A GROUP OF DMS 

The process of aggregation of multiple DMs’ PCs is 

examined in more detail and previous approaches discussed. 

This is followed by discussions of inconsistency reduction 

and clustering. 

A. Aggregation of PC judgments of a group of DMs 

PC allows a DM to consider only a pair of decision 
elements and to determine their preference, and strength of 
preference, between the pair, with respect to an intangible 
factor. This division of a larger decision problem can be 
achieved through the use of the Law of Comparative 
Judgment [5]. Given two elements x and y, we can denote 
that a DM prefers element x to element y with the notation x 
 y. Various numerical scales may be utilized to represent 
the strength of preference; the most prevalent being the Saaty 
1-9 scale [6], where, for example, if element x is preferred 3 
times more than element y, this can be denoted as x y with 
a preference strength of 3. If neither element is preferred 
over the other, the elements are said to be equally preferred, 
denoted by x∼y and represented with the value 1.The set of 
PCs, one for each pairing of elements in a set of elements, 
along with the self-comparison values and the reciprocal 
values, can be collated into a two-dimensional Pairwise 
Comparison Matrix (PCM), as shown in (1) for a set of n 

elements, where ija  represents the judgment between 

elements i and j. 
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(1) 

 

For a completed PCM of the type (1) of (n x n) elements, 

there exists a weights vector Twwww },...,,{ 321 , where 
iw  

represents the weighting of the element i for i=1 to n. A 

weights vector can be derived through the use of a 

Prioritization Method (PM). Many PMs exist for this task; 

see [7] for a comprehensive discussion of PMs. PCs can 

similarly be utilized when multiple DMs provide their 

preferences to create multiple PCMs. In this case a single 

weights vector, representing the combined preferences of all 

the DMs is to be derived. Given a set of D DMs giving their 

PC preferences for a set of n elements, the problem is to 

aggregate the PCM’s of the DMs to derive a single weights 

vector. This may be achieved through Aggregation of 

Individual Judgments (AIJ) - deriving an aggregated PCM 

from which a single weights vector can then be derived, or 

via Aggregation of Individual Priorities (AIP) - calculation 

of a separate weights vector for each DM, from which a 

single weights vector can be calculated through the 

aggregation of the set of weight vectors. Our approach deals 

with AIJ as it allows inconsistency to be considered and 

reduced within the aggregation process, before weights 

vector priorities are derived. 

The Geometric Mean Method (GMM) [8] can be used to 

aggregate the PCMs of multiple DMs into a single 

aggregated PCM. GMM looks to find an aggregated PCM 

without consideration of the compromise needed between 

each DM to reach consensus and no levels of tolerance to 

compromise can be set. The Arithmetic Mean Method 

(AMM) [9] can also be utilized to calculate an aggregated 

PCM of judgments using the arithmetic mean for the 

synthesis calculation. As with the GMM, the AMM does not 

consider the levels of compromise upon each DM’s 

judgments. A method proposed in [10] considers the level of 

compromise upon each DM’s judgments during aggregation 

for a small group. Building on this, we now propose an 

approach for when the number of DM’s is large, utilizing 

clustering to first group DMs into congruent subgroups 

before aggregating based upon representational judgments 

of each subgroups member’s. 

B. Inconsistency 

 The consistency of a PCM is the extent to which its 
judgments are coherent. When there is inconsistency present 
in a PCM, any weights vector derived from it will only be an 
estimate of its true preferences. Consequently, different PMs 
may then derive different weights vector estimates. 
Inconsistency within a PCM of more than a handful of 
elements has been shown to be almost inevitable [7] and 
therefore needs to be considered. Inconsistency may be 
ordinal or cardinal in nature. 

 Ordinal inconsistency identifies inconsistent information 
independently of consideration of the strengths of preference 
of a DM’s judgments. We denote that an element x is 
preferred to another element y with the notation x y.  Given 
a set of 3 elements, a, b and c: if a b, b c and c a, then 
the judgments are intransitive and ordinal inconsistency is 
present in the form of a 3-way-cycle. The total number of 3-
way cycles present can be used as a measure of ordinal 
inconsistency in a PCM. The presence of 3-way cycles can 
be determined via an algorithm proposed in [11]. This can 
also be utilized to determine the total number of 3-way 
cycles within a PCM, usually denoted as L. Cardinal 
inconsistency identifies inconsistency between a set of 
judgments taking into account the strength of preference of 
the judgments. The Consistency Ratio (CR), proposed by 
Saaty [6], can be utilized to measure the level of cardinal 
inconsistency of a PCM. The lower the CR value, the lower 
the amount of cardinal inconsistency present in the PCM. 
Saaty further proposed an acceptability threshold value of a 
PCM’s CR value [6]. The threshold is designed to be an 
indicator as to whether a PCM is consistent enough for a 



 

 

satisfactory weights vector estimate to be derived. Using this 
threshold, a PCM with a CR value of 0.1 or less is 
considered to be acceptable.   

Previous approaches have looked to reduce inconsistency 

in a single PCM as a separate process (to that of group 

aggregation) to find an altered PCM with reduced 

inconsistency. They are generally approaches that consider 

either ordinal or cardinal inconsistency only and look to 

converge to a single predetermined fixed value of 

inconsistency, see [12], [13]. 

C. Clustering 

 We can look to group DMs with similar views through 
clustering. Clustering discovers natural groupings of a set of 
points or objects. [14]. Such clustering can be performed by 
the K-means clustering approach. Given a set of d 
dimensional instances, K-means seeks to cluster the 
instances into a set of K clusters, such that the squared error 
between the mean point of a cluster and its points are 
minimised. [15].  

The K-means algorithm has three stages: 

1. The instances are assigned randomly into k clusters; 

2. For each cluster the centroids between its members 
is calculated and then the distance each instance is 
from each cluster centroid is determined; 

3. Each instance is then assigned to the cluster with 
the nearest centroid.  

Stages 2 and 3 are then repeated until no instances are 
assigned to a new cluster in Stage 3. 

 A limitation of K-means is that as the instances are 
initially assigned randomly to clusters it is possible that a sub 
optimal convergence is reached. The K-means++ algorithm 
[16] is an enhancement to K-means that seeks to reduce this 
limitation through a modified first stage that aims to initially 
assign the instances into clusters such that the initial 
clustering is closer to an optimal initialisation, see [16]. The 
k-means++ algorithm is utilized within our approach. 

III. OUR APPROACH  

When we have a large number of DMs our approach 
seeks to cluster them into subgroups based upon the 
similarity of their views. Therefore DMs with analogous 
views will be in the same cluster and DMs with conflicting 
views in different clusters. We then derive a single 
aggregated PCM representation for each subgroup. We 
utilise these aggregated PCMs as part of a MOO approach to 
find aggregated solutions between the conflicting subgroups. 
Clustering the DMs into sub-groups will reduce the number 
of objectives needed as part of the MOO approach to reach 
aggregation. Additionally, via clustering the DMs on 
similarity of their views, it also seeks to reduce the amount 
of redundancy in the MOO stage as DMs with similar views 
will be grouped as one. The stages of our approach are 
shown in Fig 1. 

 

Fig 1: Aggregation Process 

The approach has three stages:  

1. The set of DMs are clustered into subgroups based 
upon the similarity of their ranking of the set of 
elements; 

2. From each cluster a single aggregated PCM is 
derived as representative of the subgroup; 

3. The derived Aggregated PCM of each cluster is 
utilized within a MOO approach to find non-
dominated aggregated solutions between sub-groups. 

1) Clustering the DMs 
The DMs are grouped into clusters based upon the 

similarly of their views regarding their ranking of the 
elements of the problem. Given a problem with n elements 
and D decision makers who each define a complete n by n 
PCM of their judgments },...,,{ 21 DPCMPCMPCM , for each 

DM we derive a weights vector of their judgments of the n 
elements. In the examples presented, the Geometric Mean 
PM [17] is utilized to derive weights vectors, however any 
PM can be utilized within our approach. This set of D 
weights vectors is then utilized as the feature vector input for 
the clustering stage. This way DMs with similar ranking of 
the elements will be grouped together into clusters. The set 
of D DMs are clustered into C clusters using k-means++. 
The feature set of 5 DMs’ initial PCMs and their rankings of 
a set of 4 elements is shown in Fig 2. 

2) Deriving Aggregated PCMs for Clusters 
 From each cluster a single aggregated PCM is derived 
from its members utilizing a single objective optimisation 



 

 

process. For each DM’s PCM the minimum number of 
judgments (J) needed to contain all the information within 
each PCM can be represented as:  
 

 2/)1(  nnJ  (2) 

 

Thus, a Judgment Set O of cardinality J can be 

selected, containing enough information to reconstruct the 

whole of the PCM for that DM. O can be represented as the 

upper triangle of a PCM. We can model an O representation 

of each DM’s PCM },...,,{ 21 DOOO , each of which consists 

of J judgments },...,,{ 21

k

J

kk ooo  for k=1,…,D. Each cluster’s 

aggregated PCM is derived via a single objective 

optimisation process looking to optimise a total measure of 

compromise (see section C below) between the judgments 

of its members and the judgments of an aggregated PCM.  

In this way an Aggregated PCM is sought for each cluster 

that is most representational of the cluster’s members 

through minimising the total compromise to its member’s 

views. The set of C derived Aggregated PCMs are then the 

input for the MOO aggregation stage. The clusters found 

and their aggregated PCMs can be evaluated (see section B 

below) with respect to how closely matching the DMs views 

are in each cluster,  helping to determine an appropriate C 

parameter value.  

 

Fig 2: Clustering Feature Vector 

3) MOO Aggregation 

With the DMs clustered into C clusters, the Aggregated 

PCM representing each cluster’s members are utilized 

within the MOO stage to find a front of non-dominated 

solutions for the whole group. Given the set of C aggregated 

PCMs, one for each cluster },...,,{ 21 CCPCMCPCMCPCM , we 

can represent each cluster’s Aggregated PCM as judgment 

sets },...,,{ 21 COOO , again each consisting of J judgments 

},...,,{ 21

k

J

kk ooo  for k=1,…,C. We seek the set of non-

dominated Aggregated Consensus Solutions, which we can 

represent as a judgment set of cardinality J, denoted as 

},...,,{ 21 jaaaA . The set A represents the decision 

variables that can be obtained by minimizing the set of 

objectives. We seek to minimise the set of objectives 

consisting of two subsets.  The first subset representing 

measures of compromise objectives of cardinality C, that 

each seeks to minimise the measure of compromise with 

respect to the corresponding O of each cluster.  The second 

subset represents any additional inconsistency objectives. 

The approach additionally allows constraints to be set on the 

objectives, both on measures of compromise objectives and 

upon inconsistency objectives. Our approach then seeks to 

simultaneously optimise this set of objectives to find the 

trade-off front of non-dominated PCM solutions to the 

problem. Knowledge pertaining to the levels of conflict 

between the clusters can be gleamed from examination of 

the trade-off front. A weights vector representing the 

aggregated solution for the whole group can then be derived 

from any of the non-dominated PCM solutions found. For 

example if the 5 DMs shown in Fig 2 are clustered into 2 

clusters - the first containing DMs 1,4 and the second 

containing DM 2,3,5 - derived PCMs for the two clusters 

along with an illustration of a set of trade-off non-dominated 

PCM solutions are shown in Fig 3. Any solution from the 

trade-off front of solutions can then be selected as shown, 

from which a final aggregated weights vector can be 

derived. 

 

Fig 3: Aggregation Process 



 

 

Finally, as required, we can additionally determine a 

single aggregated solution automatically from the set of 

non-dominated solutions found utilising a total measure of 

compromise such as that shown in (9). For each non-

dominated solutions found, a measure of the total (global) 

compromise measure can be calculated. From this, a ranking 

of the non-dominated solutions can be sought with respect 

to their global measure of compromise, from which the 

solution with the lowest total measure of compromise can be 

selected and a weights vector derived. When multiple non-

dominated solutions share the lowest total measure of 

compromise value,  a single weights vector  can be derived 

as the average (utilizing the geometric mean) of the separate 

weight vectors derived from this sub-set of non-dominated 

solutions that share the lowest value. 

B. Measures of Clustering Evalution 

 We can evaluate the clustering of the DMs to aid in the 
selection of an appropriate number of clusters in which to 
group the set of DMs. From each cluster we can measure the 
similarly between the rankings of the elements derived from 
a cluster’s aggregated PCM and the cluster’s member’s 

initial rankings. Given a weights vector cw derived from an 

Aggregated PCM of a cluster for an n element problem, 
T

cnccc wwww },...,,{ 21 and the set of weights vectors of the 

cluster’s members 1cw  to cmw  each consisting of n weights 

where m is the number of DMs in the cluster 

},...,,{ 21

k

n

kk www  for k=1,…m. We can calculate measures of 

Total Ranking Deviation and Total Rank Reversals for the 
cluster. 

1) Total Ranking Deviation (TRD) 

The Total Ranking Deviation (TRD) is a measure of the 

total difference between each element in a cluster’s 

aggregated weights vector and each member’s weights 

vector for each element for all members of the cluster 
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(3) 

 

2) Total Rank Reversals (TRR) 

The Total Rank Reversals (TRR) is a measure of the 

total number of preferences in an Aggregated PCM for a 

cluster that represents the reversed view within a cluster 

member’s preferences, summed for all members of the 

cluster. We can represent a weights vector of size n as n-1 

Preferences - a Preference Set. A Rank Reversal (RR) 

occurs when a ranking preference within a DM’s Preference 

Set is reversed in the cluster’s Preference Set.  TRR is the 

sum of the RR for all members of the cluster:  
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(4) 

 

Consequently a TRR value of 0 represents a cluster for 

which all its members share the same ordinal rankings of the 

elements (but not necessarily the same cardinal weights 

values). Additionally we can divide the TRR value of a 

cluster by the number of DMs in the cluster to obtain an 

average measure of reversals per DM for the cluster. 

C. Measures of Compromise 

Given a DM judgment set (O) represented as a set of 

judgments },...,,{ 21 Jooo of cardinality J. The amount of 

change between O and a second Aggregated judgment set 

(A) of judgments },...,,{ 21 Jaaa

 

can be calculated using a 

measure of compromise. Each measure can be employed as 

an objective to measure the compromise between a cluster’s 

representational judgments and an aggregated consensus 

solution. 

1) Number of Judgment Violations (NJV) 

NJV is a measure of the number of the original set of PC 

judgments that have changed, without consideration of the 

amount of change of each judgment; where  evaluates to 0 

or 1 for each Boolean evaluation: 
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(5) 

2) Total Judgment Deviation (TJD) 

TJD is a measure of the total amount of change between 

the original judgments and an altered judgment set. It takes 

into consideration the amount of preference change between 

each judgment comparison: 

 

 




J

j

jj aoabsTJD
1

 
 

(6) 

 

A modified version of TJD is Squared Total Judgment 

Deviation (STJD). Here the deviations between the 

corresponding judgments in both sets are squared; 

consequently altered judgments with a large alteration in 

strength will have a greater impact upon the measure’s total:  
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(7) 

3) Number of Judgment Reversals (NJR) 

NJR is a measure of the number of judgments from the 

original set that have been inverted in an altered judgment 

set. For example, given an original judgment between 

elements x and y where x y: if in an altered judgment set it 

is the case that x y then a judgment reversal has occurred. 

This measure also considers half reversals, which occur 

when a judgment of equal preference is altered to be a 

judgment of not equal preference or vice versa. The 1-9 

scale can be used to specify equal preference, greater than 



 

 

equal preference and less then equal preference, as 1, greater 

than 1 and less than 1 respectively:  
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1: jo   1 and ja    1 

1: jo   1 and ja    1 

½: jo   1 and ja  1 

½: jo   1 and ja   1 

0: otherwise 

 

(8) 

4) Total Measures of Compromise 

To find an Aggregated PCM for each cluster a total 

measure of compromise is used. This represents the sum of 

a measure of compromise value for each DM within the 

cluster for a chosen measure of compromise. For example, 

the total number of judgment reversals (TNJR) for a cluster 

with m members can be calculated via: 
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Total measures of compromise for the other measures of 

compromise can be calculated in a similar way. Total 

measures of compromise can additionally be utilized to help 

find an aggregated single solution from the front of non-

dominated solutions found after the MOO stage.  

D. Inconsistency Objectives 

To help discovery of consistent non-dominated solutions 

during the MOO stage, inconsistency objectives can be 

incorporated into the MOO stage. Both cardinal and/or 

ordinal inconsistency measures can be incorporated. Ordinal 

inconsistency can be considered through employing the 

number of 3-way cycles (L) as an inconsistency reduction 

objective [11], looking to minimize the number of cycles 

within non-dominated solutions found. Cardinal 

inconsistency can be considered through utilizing the 

Consistency Ratio (CR) [6] as an inconsistency reduction 

objective. Constraints can also be set on any inconsistency 

objectives, for example, to adhere to Saaty’s 

recommendation that a PCM’s CR should be less than 0.1 

[6], an upper limit constraint of 0.1 can be set upon a CR 

inconsistency reduction objective. 

IV. ILLUSTRATIVE EXAMPLES 

Examples of our approach are presented following an 

overview of its implementation: Example 1 illustrates the 

process with a small number of DMs to aid explanation; 

Example 2 illustrates the approach for a large number of 

DMs. 

A. Approach Implementation 

For the clustering stage the K-means++ algorithm is 

used to group the DMs. During the clustering the Euclidean 

distance was employed as the distance function and 

maximum iterations were set to 500. 

Genetic Algorithms (GA) can be used to stochastically 

solve optimization problems and are employed to derive 

aggregated PCMs for each cluster. A Multiple Objective 

Genetic Algorithm (MOGA) is employed in the MOO stage 

to find a set of non-dominated solutions. The MOO stage is 

implemented utilizing the MOCell MOGA [18] in which the 

population of individuals is arranged as a two-dimensional 

grid and restricted mating ensures diversity is preserved for 

longer. An external archive is used to store the set of non-

dominated solutions found and feedback is additionally 

employed to help stimulate convergence towards the 

problem’s trade-off front. Objective constraints have been 

implemented utilizing Constrained Pareto Dominance [19] 

as defined as the constraint handling procedure within the 

Non-dominated Sorting Genetic Algorithm-II (NSGAII) 

[19]. The MOGA examples were executed employing the 

following parameter settings: population size of 100 (10x10 

grid); maximum evaluations count of 25,000; archive size 

dynamically defined based upon the number of clusters and 

objectives within the problem with a feedback value of 25% 

of the size of the archive. Selection is performed via binary 

tournament (see [20] for more details) with single point 

crossover (with crossover probability 0.9) and bit flip 

mutation (with probability 0.01) employed (see [21] for 

discussions of crossover and mutation). For deriving 

representational aggregated PCMs for each cluster each 

single objective GA is employed with a population size of 

100 and maximum evaluations count of 25000. Again 

selection is performed via binary tournament with single 

point crossover and bit flip mutation utilized. 

B. Example 1 

Table 1 shows the PCMs and priority rankings from 5 

DMs for a set of 4 elements. 

TABLE 1: EXAMPLE 1 - 5 DMS’ ORIGINAL PCMS 

   
DM1 

     1 2 3 4 

 

Pri. 

1 1      1/5  1/2  1/7 

 

0.06 

2 5     1     3     8     

 

0.59 

3 2      1/3 1      1/2 

 

0.14 

4 7      1/8 2     1     
 

0.21 

       

   
DM2 

     1 2 3 4 

 

Pri. 

1 1     3     6     6     

 

0.59 

2  1/3 1     5      1/2 
 

0.18 
3  1/6  1/5 1      1/2 

 

0.07 

4  1/6 2     2     1     

 

0.17 

      

 
 

 

 
 



 

 

   
DM3 

     1 2 3 4 

 

Pri. 

1 1     5     2     7     
 

0.57 
2  1/5 1     3     2     

 

0.21 

3  1/2  1/3 1      1/2 

 

0.11 

4  1/7  1/2 2     1     
 

0.12 

       

   
DM4 

     1 2 3 4 

 

Pri. 

1 1      1/2  1/3  1/3 

 

0.11 

2 2     1     2     2     
 

0.38 
3 3      1/2 1      1/2 

 

0.21 

4 3      1/2 2     1     

 

0.30 

       

   
DM5 

     1 2 3 4 
 

Pri. 

1 1     2      1/2 7     

 

0.38 

2  1/2 1     7      1/2 

 

0.27 

3 2      1/7 1      1/2 
 

0.14 
4  1/7 2     2     1     

 

0.20 

  

Next a C value of 2 is used to cluster the group, and then 
Total STJD is utilized as the single objective in each cluster, 
to find an Aggregated PCM for each cluster. The pair of 
derived aggregated PCMs along with the DMs assigned to 
each cluster are shown in Table 2. The evaluation measures 
of these clusters are shown in Table 3. We see that when 
C=2 the DMs have been clustered such that aggregated 
PCMs weights vectors are derived without any rank reversals 
for any DM. 

TABLE 2: EXAMPLE 1 - DERIVED AGGREGATED PCMS FOR THE 2 CLUSTERS 

C1 

Size:2 
DMS: {1,4} 

  1 2 3 4 

 

Pri. 

1 1      1/4  1/2  1/5 

 

0.08 

2 4     1     2     5     

 

0.51 

3 2      1/2 1      ½ 
 

0.17 
4 5      1/5 2     1     

 

0.24 

       
C2 

Size:3 
DMS: {2,3,5} 

  1 2 3 4 

 

Pri. 

1 1     3     3     7     

 

0.55 

2  1/3 1     5      1 
 

0.22 
3  1/3  1/5 1      1/2 

 

0.08 

4  1/7 1     2     1     

 

0.14 

 

TABLE 3: EXAMPLE 1 CLUSTER EVALUATION MEASURES 

  TRD TRR 

C1 0.43 0 

C2 0.55 0 

 

 Next utilizing STJD as the objective measure of 
compromise for each cluster in the MOO stage, we derive a 
set of non-dominated solutions for this 2 objective set, the 
objective space of which is shown in Fig 4. We see there are 
a sub-set of the non-dominated solutions which share the 
lowest Total (global) STJD value. From this sub-set a single 
weights vector for the whole group can be derived (see Table 
4) as the average (utilizing the geometric mean) of the 

separate weight vectors derived from this sub-set of non-
dominated solutions that share the lowest Total STJD value. 

TABLE 4: EXAMPLE 1 OVERALL AGGREGATED WEIGHTS VECTOR 

1 2 3 4 

0.2584 0.4431 0.1286 0.1699 

 

 

Fig 4: Example 1 Objective space 

C. Example 2 

 Now let us consider an example with a much larger 
number of DMs, that of a set of 4 elements to be ranked by 
100 DMs. We will look to cluster the 100 DMs into 5 
clusters, then utilize the Total NJR measure to derive an 
aggregated PCM for each cluster. The 5 derived aggregated 
PCMs and priorities rankings are shown in Table 5 along 
with the number of DMs assigned to each cluster. The 
evaluation of the clustering is shown in Table 6. 

TABLE 5: EXAMPLE 2 - DERIVED AGGREGATED PCMS FROM 5 CLUSTERS 

C1 
Size:27 

 
1 2 3 4 

 
Pri. 

1 1 1/9 1/2 1/9 
 

0.04 
2 9 1 8 1/8 

 

0.24 

3 2 1/8 1 1/7 

 

0.06 

4 9 8 7 1 
 

0.66 

       
C2 

Size:20 

 
1 2 3 4 

 
Pri. 

1 1 1/5 1/5 1/4 

 

0.65 

2 5 1 1/5 1/2 

 

0.16 

3 5 5 1 9 
 

3.00 
4 4 2 1/9 1 

 

4.00 

       
C3 

Size:13 

 
1 2 3 4 

 
Pri. 

1 1 8 1/8 1/4 

 

0.13 

2 1/8 1 1 1/8 

 

0.06 

3 8 1 1 1/4 
 

0.21 
4 4 8 4 1 

 

0.60 

       



 

 

C4 
Size:15 

 
1 2 3 4 

 
Pri. 

1 1 2 7 6 

 

0.58 

2 1/2 1 1 1 

 

0.16 

3 1/7 1 1 6 
 

0.18 
4 1/6 1 1/6 1 

 

0.08 

       
C5 

Size:25 

 
1 2 3 4 

 
Pri. 

1 1 1/3 1 2 

 

0.16 

2 3 1 6 9 

 

0.63 

3 1 1/6 1 3 
 

0.15 
4 1/2 1/9 1/3 1 

 

0.06 

 

 From Table 6 we observe that for each cluster an 
aggregated PCM has been derived whose weights vector has 
an average total Rank Reversals lower than the number of 
DMs for each cluster. Thus we can conclude that the 
aggregated PCMs for the clusters are good representations of 
their member’s views. 

TABLE 6: EXAMPLE 2 CLUSTER EVALUATION MEASURES 

 

TRD TRR Size Average RR Per DM 

C1 16 21 27 0.78 

C2 6.9 16 20 0.80 

C3 3.2 12 13 0.92 

C4 5.1 13 15 0.87 

C5 11 23 25 0.92 

 

 Next we take the 5 aggregated PCMs and employ NJR as 
a measure of compromise objective for each along with a 6th 
objective of CR, with an added constraint upon it of 0.1. So 
we seek to derive a set of non-dominated solutions all of 
which will have a CR value less than Saaty’s threshold 
recommendation. We could visualise the solutions in the 
objective space with respect to pairs of clusters to get further 
understanding of the conflict between them. This way we can 
see clusters that are closest to agreement and also clusters 
with outlying views. From the set of non-dominated 
solutions found we can then determine the sub-set of 
solutions with the lowest Total NJR value from which we 
can derive a final aggregated weights vector for the 100 
DMs, shown in Table 7.  

TABLE 7: EXAMPLE 2 OVERALL AGGREGATED WEIGHTS VECTOR 

1 2 3 4 

0.0886 0.3298 0.1601 0.4215 

V. CONCLUSION 

We have presented an approach to the aggregation of 

PC judgments of a large group of DMs through first 

clustering the DMs into subgroups based upon the similarity 

of their views. We then derive a single aggregated PCM 

representation for each subgroup. Using these aggregated 

PCMs and MOO we look to derive a set of non-dominated 

solutions between the clusters, whilst simultaneously 

seeking to reduce inconsistency. 

Future work will investigate utilizing the cluster 

evaluation measures to help set thresholds of difference 

between DMs to help define the number of clusters in which 

to group the DMs. We will also investigate employing 

different clustering approaches such as hierarchical 

clustering.   
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